IL-1 ILnesses:
From diagnosis to management of pyrexic, pustular and purulent dermatoses

Haley Naik, MD MHS
Dermatology Branch
National Cancer Institute
National Institutes of Health
March 19, 2015
Conflicts of Interest

No financial conflicts of interest.

I am conducting an investigator-initiated clinical trial using anakinra to treat pustular dermatoses (NCT01794117).

I will be discussing off-label uses of pharmacological agents for the management of autoinflammatory diseases.
Autoimmune diseases

Autoinflammatory diseases

- Rare monogenic autoinflammatory diseases
 - CAPS, DIRA, DITRA
- Mixed pattern diseases
 - Behcets, some vasculitides
- Rare monogenic autoimmune diseases
 - ALPS, IPEX, APECED

Classic polygenic autoinflammatory diseases
- Gout, Still’s dz

Classic polygenic autoimmune diseases
- SLE, dermatomyositis, scleroderma
IL-1β

- Pro-inflammatory cytokine
- Produced by myeloid cells
- Induces transcription of proinflammatory cytokines
- IL-1 receptor type 1 (IL-1R1) is ubiquitously expressed
- Synthesis and release are tightly regulated
- Also regulated by IL-1 receptor antagonist (IL-1RA)
Monogenic Autoinflammatory Diseases

<table>
<thead>
<tr>
<th>Disease*</th>
<th>Gene</th>
<th>Protein</th>
<th>Mode of inheritance</th>
<th>Mutation type</th>
<th>Mechanism(s) of disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familial cold autoinflammatory syndrome 1 (FCAS1)‡</td>
<td>NLRP3</td>
<td>NLRP3</td>
<td>Autosomal dominant</td>
<td>Gain of function</td>
<td>Inflammasome activation IL-1β release</td>
</tr>
<tr>
<td>Muckle–Wells syndrome (MWS)‡</td>
<td>NLRP3</td>
<td>NLRP3</td>
<td>Autosomal dominant</td>
<td>Gain of function</td>
<td>Inflammasome activation IL-1β release</td>
</tr>
<tr>
<td>Neonatal onset multisystem inflammatory disease (NOMID)¶</td>
<td>NLRP3</td>
<td>NLRP3</td>
<td>De novo or autosomal dominant</td>
<td>Gain of function</td>
<td>Inflammasome activation IL-1β release</td>
</tr>
<tr>
<td>Pyogenic arthritis, pyoderma gangrenosum and acne syndrome (PAPA)</td>
<td>PSTPIP1</td>
<td>PSTPIP1</td>
<td>Autosomal dominant</td>
<td>Gain of function</td>
<td>Inflammasome activation</td>
</tr>
<tr>
<td>Deficiency of IL-1-receptor antagonist (DIRA)</td>
<td>IL1RN</td>
<td>IL-1Ra</td>
<td>Autosomal recessive</td>
<td>Loss of function</td>
<td>Decreased inhibition of IL-1α/β signalling</td>
</tr>
<tr>
<td>Deficiency of IL-36-receptor antagonist (DITRA)</td>
<td>IL36RN</td>
<td>IL-36Ra</td>
<td>Autosomal recessive</td>
<td>Loss of function</td>
<td>Decreased inhibition of IL-36 signalling</td>
</tr>
</tbody>
</table>

Fabinon and Aksentivich. *Nat Rev Rheumatol* 2015;11
Cryopyrin Associated Periodic Fever Syndromes (CAPS)

Mild
- Familial Cold Autoinflammatory Syndrome (FCAS)
- Muckle-Wells Syndrome (MWS)
- Neonatal Onset Multifocal Inflammatory Disease (NOMID)

Severe

Clinical features
- Fevers
- Neutrophilic urticaria
- Conjunctivitis
- Arthralgias
- Leukocytosis
- ↑ Inflammatory markers
- CNS/cochlear inflammation
- Bone lesions
NLRP3 Mutations

Beer HD, et al. *JID* 2014; 134
IL-1 antagonists

<table>
<thead>
<tr>
<th>Drug</th>
<th>Half-life</th>
<th>Dose</th>
<th>Administration</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilaris (Canakinumab)</td>
<td>$t_{1/2} = 26$ days</td>
<td>150mg</td>
<td>every 8 weeks</td>
<td>CAPS, sJIA</td>
</tr>
<tr>
<td>Kineret (Anakinra)</td>
<td>$t_{1/2} = 4-6$ hours</td>
<td>100mg</td>
<td>daily</td>
<td>RA, CAPS</td>
</tr>
<tr>
<td>Xoma 052 (Gevokizumab)</td>
<td>$t_{1/2} = 22$ days</td>
<td>60mg</td>
<td>every 4 weeks</td>
<td>(?uveitis, PG)</td>
</tr>
<tr>
<td>Arcalyst (Rilonacept)</td>
<td>$t_{1/2} = 8$ days</td>
<td>160mg</td>
<td>weekly</td>
<td>CAPS</td>
</tr>
</tbody>
</table>

Beer HD, et al. *JID*; 2014; 134
Neutrophilic Urticaria

- Schnitzler syndrome
 - Neutrophilic urticaria
 - Fevers
 - Bony lesions
 - Monoclonal IgM

- Still’s disease/sJIA
 - Neutrophilic urticaria
 - Fevers
 - Arthritis
 - ↑ Ferritin

- Urticarial Vasculitis
 - Chronic urticaria
 - Arthralgias
 - Systemic involvement
 - Leukocytoclastic vasculitis

Eiling, et al. JAAD 2007;57
Monogenic Autoinflammatory Diseases

<table>
<thead>
<tr>
<th>Disease*</th>
<th>Gene</th>
<th>Protein</th>
<th>Mode of inheritance</th>
<th>Mutation type</th>
<th>Mechanism(s) of disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familial cold autoinflammatory syndrome 1 (FCAS1)*</td>
<td>NLRP3</td>
<td>NLRP3</td>
<td>Autosomal dominant</td>
<td>Gain of function</td>
<td>Inflammasome activation IL-1β release</td>
</tr>
<tr>
<td>Muckle–Wells syndrome (MWS)*</td>
<td>NLRP3</td>
<td>NLRP3</td>
<td>Autosomal dominant</td>
<td>Gain of function</td>
<td>Inflammasome activation IL-1β release</td>
</tr>
<tr>
<td>Neonatal onset multisystem inflammatory disease (NOMID)*</td>
<td>NLRP3</td>
<td>NLRP3</td>
<td>De novo or autosomal dominant</td>
<td>Gain of function</td>
<td>Inflammasome activation IL-1β release</td>
</tr>
<tr>
<td>Pyogenic arthritis, pyoderma gangrenosum and acne syndrome (PAPA)</td>
<td>PSTPIP1</td>
<td>PSTPIP1</td>
<td>Autosomal dominant</td>
<td>Gain of function</td>
<td>Inflammasome activation</td>
</tr>
<tr>
<td>Deficiency of IL-1-receptor antagonist (DIRA)</td>
<td>IL1RN</td>
<td>IL-1Ra</td>
<td>Autosomal recessive</td>
<td>Loss of function</td>
<td>Decreased inhibition of IL-1α/β signalling</td>
</tr>
<tr>
<td>Deficiency of IL-36-receptor antagonist (DITRA)</td>
<td>IL36RN</td>
<td>IL-36Ra</td>
<td>Autosomal recessive</td>
<td>Loss of function</td>
<td>Decreased inhibition of IL-36 signalling</td>
</tr>
</tbody>
</table>

Fabinon and Aksentivich. *Nat Rev Rheumatol* 2015;11
Pyogenic Arthritis, Pyoderma gangrenosum, Acne (PAPA)

- Autosomal dominant
- Incomplete penetrance
- Painful, recurrent, aseptic skin & joint inflammation
- Fevers
- 1st decade: aseptic monoarthritis (elbows, knees, ankles), neutrophilic infiltrate
- Puberty: severe acne, PG
- Skin involvement variable
- Pathergy
PSTPIP1 Mutations

Beer HD, et al. JID; 2014; 134
PAPA: Management

- Most consistent responses with TNFα antagonists
- Anakinra effective for joint >> skin
- Combination therapy with IL-1 antagonist + TNFα antagonist
- Systemic corticosteroids for joints may exacerbate acne

Cortis E, et al. *J Pediatrics* 2004;145
Smith EJ, et al. *Current Genomics* 2010;11
Tofteland ND, et al. *J Clin Rheumatol* 2010;16
PSTPIP1 mutations in isolated PG?

Mutations in the PSTPIP1 gene and aberrant splicing variants in patients with pyoderma gangrenosum

1. Splicing variants \rightarrow frameshift mutations \rightarrow premature stop codons \rightarrow protein truncation
2. Novel G258A mutation, exon 11 \rightarrow affects PSTPIP1 dimerization
3. Novel (CCTG)$_n$ tandem repeats in PSTPIP1 promoter

Clin Exp Derm 2011;36:889-895
Pyoderma Gangrenosum

Infliximab

Ustekinumab

Guenova E, et al. *Arch Derm* 2011;147
An open-label study of anakinra for the treatment of moderate to severe hidradenitis suppurativa

Leslie KS, et al. JAMA Dermatology 2014;70
Synovitis-Acne-Pustulosis-Hyperostosis-Osteitis (SAPHO) Syndrome

Osteoarticular
- Hyperostosis and osteitis
 - Anterior chest wall (65-90%)
 - Spinal involvement (30%)
 - Sacroiliitis

Dermatologic
- Palmoplantar pustulosis (60%)
- Severe acne vulgaris (25%, male)
- Follicular occlusion triad
- Generalized pustular psoriasis
- Psoriasis vulgaris
- Pyoderma gangrenosum
- Sweet syndrome

Jurik AG et al. *J Pediatric Orthop* 1988
Grosjean C et al. *J Rheumatology* 2010
Hurtado-Nedelec M et al. *J Rheumatology* 2010
Nguyen et al. *Semin Arthr Rheum* 2012
SAPHO: Management

• Therapy
 – Joint involvement
 – 1st line: NSAIDs
 – 2nd line: MTX vs bisphosphonates vs TNFα antagonist
 – Skin involvement
 – Systemic retinoids, methotrexate, cyclosporine
 – TNFα antagonist: infliximab, adalimumab, etanercept

Arias-Santiago et al. \textit{Acta Derm Venereol} 2010
Eleftheriou et al. \textit{Rheumatology} 2010
Anakinra treatment of SAPHO syndrome: short-term results of an open study

Table 1 Summary of the case reports

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age-sex</th>
<th>Disease duration (years)</th>
<th>Previous treatments</th>
<th>Skin involvement</th>
<th>Bone and joint involvement</th>
<th>Efficacy</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>54-F</td>
<td>11</td>
<td>NSAIDs Prednisone MTX Lef LEF</td>
<td>PPP</td>
<td>Synovitis</td>
<td>Yes after 1 week; skin 100%; joint 80%</td>
<td>Injection site reaction; stopped after 10 days</td>
</tr>
<tr>
<td>2</td>
<td>41-M</td>
<td>23</td>
<td>NSAIDs Prednisone Colchicines SZP Retinoids</td>
<td>PPP</td>
<td>Osteitis (spine) Synovitis</td>
<td>Yes after 10 days; BASDAI 45 to 9; pain 80%; NSAIDs 50%; ESR 100 to 66</td>
<td>No AE</td>
</tr>
<tr>
<td>3</td>
<td>49-F</td>
<td>13</td>
<td>NSAIDs MTX Infliximab Retinoids</td>
<td>Hydradenitis</td>
<td>Synovitis</td>
<td>Yes after 15 days; pain synovitis; stop opioids</td>
<td>No AE</td>
</tr>
<tr>
<td>4</td>
<td>53-F</td>
<td>4</td>
<td>NSAIDs Prednisone MTX Colchicines Infliximab Etanercept Adalimumab</td>
<td>PPP and furunculosis</td>
<td>Osteitis (pelvis) Synovitis</td>
<td>Yes within 1 month; pain 70%; analgesics reduction; ESR 24 to 8</td>
<td>No AE</td>
</tr>
<tr>
<td>5</td>
<td>25-F</td>
<td>2</td>
<td>NSAIDs</td>
<td>PPP</td>
<td>Osteitis Hyperostosis (fibula) Synovitis</td>
<td>Yes after 15 days; pain 6.5 to 2; NSAID reduction</td>
<td>No AE</td>
</tr>
<tr>
<td>6</td>
<td>37-M</td>
<td>7</td>
<td>Pamidronate NSAIDs Pamidronate Adalimumab Etanercept</td>
<td>PPP</td>
<td>Osteitis Hyperostosis Sterno costo clavicular</td>
<td>No at 2 months</td>
<td>Transaminases $\times 1.5$</td>
</tr>
</tbody>
</table>

AE, adverse event; ESR, erythrocyte sedimentation rate; F, female; LEF, leflunomide; M, male; MTX, methotrexate; NSAIDs, non-steroidal anti inflammatory drugs; PPP, palmoplantar pustulosis; SZP, sulfasalazine.
Monogenic Autoinflammatory Diseases

<table>
<thead>
<tr>
<th>Disease*</th>
<th>Gene</th>
<th>Protein</th>
<th>Mode of inheritance</th>
<th>Mutation type</th>
<th>Mechanism(s) of disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familial cold autoinflammatory syndrome 1 (FCAS1)</td>
<td>NLRP3</td>
<td>NLRP3</td>
<td>Autosomal dominant</td>
<td>Gain of function</td>
<td>Inflammasome activation IL-1β release</td>
</tr>
<tr>
<td>Muckle–Wells syndrome (MWS)</td>
<td>NLRP3</td>
<td>NLRP3</td>
<td>Autosomal dominant</td>
<td>Gain of function</td>
<td>Inflammasome activation IL-1β release</td>
</tr>
<tr>
<td>Neonatal onset multisystem inflammatory disease (NOMID)†‡</td>
<td>NLRP3</td>
<td>NLRP3</td>
<td>De novo or autosomal dominant</td>
<td>Gain of function</td>
<td>Inflammasome activation IL-1β release</td>
</tr>
<tr>
<td>Pyogenic arthritis, pyoderma gangrenosum and acne syndrome (PAPA)</td>
<td>PSTPIP1</td>
<td>PSTPIP1</td>
<td>Autosomal dominant</td>
<td>Gain of function</td>
<td>Inflammasome activation</td>
</tr>
</tbody>
</table>

Deficiency of IL-1-receptor antagonist (DIRA)
- **Gene**: IL1RN
- **Protein**: IL-1Ra
- **Mode of inheritance**: Autosomal recessive
- **Mutation type**: Loss of function
- **Mechanism(s) of disease**: Decreased inhibition of IL-1α/β signalling

Deficiency of IL-36-receptor antagonist (DITRA)
- **Gene**: IL36RN
- **Protein**: IL-36Ra
- **Mode of inheritance**: Autosomal recessive
- **Mutation type**: Loss of function
- **Mechanism(s) of disease**: Decreased inhibition of IL-36 signalling

Fabinon and Aksentivich. *Nat Rev Rheumatol* 2015;11
Deficiency of the IL-1 Receptor Antagonist (DIRA)

- Onset birth-3 wks
- Fetal distress
- Joint swelling/pain
- Pustulosis
- Skeletal disease
 - Widening of rib ends (9/9)
 - Multifocal osteolytic lesions (8/9)
 - Heterotopic ossification (7/9)
- Stomatitis
- HSM

No high fevers; limited response to steroids
2 deaths: multi-organ failure 2/2 SIRS (2 & 21mo)
1 death: progressive interstitial fibrosis

IL-1 Receptor Antagonist Mutations

Beer HD, et al. JID 2014; 134
DIRA: response to treatment with Anakinra

Before anakinra Anakinra x5 months

Interleukin-36–Receptor Antagonist Deficiency and Generalized Pustular Psoriasis

- Autosomal recessive, familial and sporadic
- Variable onset
- Acute flares of generalized pustular psoriasis, variable frequency
- Fevers, neutrophilia, leukocytosis, systemic inflammation, ↑CRP
- Death due to septicemia

IL-36Ra =
IL-36α =
IL-36β =
IL-36γ =

DIRA vs DITRA

IL36RN mutations

1. Phenotypic spectrum of disease
2. Account for a minority of pustular dermatoses
3. Distinguishing features

Early age of onset

Systemic inflammation \(\downarrow\) Psoriasis vulgaris

First Clinical Description of an Infant With Interleukin-36-Receptor Antagonist Deficiency Successfully Treated With Anakinra

Before Anakinra

Anakinra x 1 month

Lutz, Lipsker. *Arch Derm* March 2012
Pustular Skin Disease Study

Therapeutic trial using anakinra to treat inflammatory pustular skin diseases.

Enrolling participants who:
• Are men and women, age 18 and older.
• Are diagnosed with an active inflammatory pustular skin disease such as:
 • Acrodermatitis continua of Hallopeau
 • Generalized pustular psoriasis
 • Palmoplantar pustulosis
 • Palmoplantar pustular psoriasis
 • Subcorneal pustular dermatosis
 • Reactive arthritis
• Have a primary care physician.
• Will travel to the NIH Clinical Center during the 4-month study period.

Contact:
Haley Naik MD, (301) 594-3457, haley.naik@nih.gov
NLRP3 Inflammasome Complex

Beer HD, et al. JID; 2014; 134
Thank you

- Edward Cowen, MD MHSc
- Raphaella Goldbach-Mansky, MD
- Amanda Ombrello, MD
- Mark Udey, MD PhD

Phase 2 Study of Anakinra in Inflammatory Pustular Dermatoses

- www.clinicaltrials.gov
- haley.naik@nih.gov, 301-594-3457